Mitochondrial quality control by the ubiquitin-proteasome system.

نویسندگان

  • Eric B Taylor
  • Jared Rutter
چکیده

Mitochondria perform multiple functions critical to the maintenance of cellular homoeostasis and their dysfunction leads to disease. Several lines of evidence suggest the presence of a MAD (mitochondria-associated degradation) pathway that regulates mitochondrial protein quality control. Internal mitochondrial proteins may be retrotranslocated to the OMM (outer mitochondrial membrane), multiple E3 ubiquitin ligases reside at the OMM and inhibition of the proteasome causes accumulation of ubiquitinated proteins at the OMM. Reminiscent of ERAD [ER (endoplasmic reticulum)-associated degradation], Cdc48 (cell division cycle 42)/p97 is recruited to stressed mitochondria, extracts ubiquitinated proteins from the OMM and presents ubiquitinated proteins to the proteasome for degradation. Recent research has provided mechanistic insights into the interaction of the UPS (ubiquitin-proteasome system) with the OMM. In yeast, Vms1 [VCP (valosin-containing protein) (p97)/Cdc48-associated mitochondrial-stress-responsive 1] protein recruits Cdc48/p97 to the OMM. In mammalian systems, the E3 ubiquitin ligase parkin regulates the recruitment of Cdc48/p97 to mitochondria, subsequent mitochondrial protein degradation and mitochondrial autophagy. Disruption of the Vms1 or parkin systems results in the hyper-accumulation of ubiquitinated proteins at mitochondria and subsequent mitochondrial dysfunction. The emerging MAD pathway is important for the maintenance of cellular and therefore organismal viability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system

Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mito...

متن کامل

Mutant Ubiquitin UBB+1 Induces Mitochondrial Fusion by Destabilizing Mitochondrial Fission-Specific Proteins and Confers Resistance to Oxidative Stress-Induced Cell Death in Astrocytic Cells

Mutant ubiquitin UBB+1 is observed in a variety of aging-related neurodegenerative diseases and acts as a potent inhibitor of the ubiquitin proteasome system (UPS). In the present study, we investigated the relationship between impaired UPS (using ectopic expression of UBB+1) and mitochondrial dynamics in astrocytes, which are the most abundant glial cells in the central nervous system. Immunoc...

متن کامل

Degradation of an intramitochondrial protein by the cytosolic proteasome.

Mitochondrial uncoupling protein 2 (UCP2) is implicated in a wide range of pathophysiological processes, including immunity and diabetes mellitus, but its rapid degradation remains uncharacterized. Using pharmacological proteasome inhibitors, immunoprecipitation, dominant negative ubiquitin mutants, [corrected] cellular fractionation and siRNA techniques, we demonstrate the involvement of the u...

متن کامل

Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin–proteasome system

Cell cycle progression is precisely regulated by diverse extrinsic and intrinsic cellular factors. Previous genetic analysis in Drosophila melanogaster has shown that disruption of the mitochondrial electron transport chain activates a G1-S checkpoint as a result of a control of cyclin E by p53. This regulation does not involve activation of the p27 homologue dacapo in flies. We demonstrate tha...

متن کامل

Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration

The eukaryotic cell possesses specialized pathways to turn over and degrade redundant proteins and organelles. Each pathway is unique and responsible for degradation of distinctive cytosolic material. The ubiquitin-proteasome system and autophagy (chaperone-mediated, macro, micro and organelle specific) act synergistically to maintain proteostasis. Defects in this equilibrium can be deleterious...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2011